Journal of Human Reproductive Science
Home Ahead of Print Current Issue Archives
   Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size    Users online: 136

ORIGINAL ARTICLE Table of Contents   
Year : 2009  |  Volume : 2  |  Issue : 1  |  Page : 23-26

Blastocyst stage transfer vs cleavage stage embryo transfer

Reproductive Medicine Unit, Christian Medical College Hospital, Vellore - 632 004, Tamil Nadu, India

Date of Submission02-Sep-2008
Date of Decision13-Feb-2009
Date of Acceptance31-Mar-2009
Date of Web Publication19-May-2009

Correspondence Address:
Korula George
Reproductive Medicine Unit, Christian Medical College Hospital, Vellore - 632 004, Tamil Nadu
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0974-1208.51339

Rights and Permissions



Objective: To evaluate the efficacy of blastocyst transfer in comparison with cleavage stage embryo in a similar cohort of women. Design: Retrospective analysis. Setting: University teaching hospital. Materials and Methods: Women aged 35 or less undergoing in vitro fertilization/intracytoplasmic sperm injection between January 2005 and December 2006 were included in the study. When four or more grade 1 embryos were observed on day 3, extended culture till day 5 was undertaken. This policy was compared with a cohort of women who had at least three grade 1 embryos on day 3 and who had undergone a cleavage stage embryo transfer during the time period of January 2002-December 2004. Primary outcome evaluated was implantation rate and clinical pregnancy rate. Results: Group 1 consisted of 50 women who underwent extended culture and blastocyst transfer. Group 2 comprised of 85 women who had cleavage transfer. The implantation rate for embryos transferred in group 1 was significantly higher than that for embryos transferred on day 3 (40.16% vs 11.43%). The clinical pregnancy rate was also significantly better with blastocyst transfer as compared with cleavage stage transfer (62% vs 29.76%). Significantly fewer embryos were required for transfer at the blastocyst stage compared with day 3 transfer (2.54 vs 3.45). Conclusion: In selected cases, blastocyst transfer with fewer embryos can be performed with high implantation and clinical pregnancy rates. This policy could lead to a reduction in the incidence of higher-order pregnancies.

Keywords: In vitro fertilization/intracytoplasmic sperm injection, blastocyst stage embryo, cleavage stage embryo, pregnancy rates

How to cite this article:
Mangalraj AM, Muthukumar K, Aleyamma T K, Kamath MS, George K. Blastocyst stage transfer vs cleavage stage embryo transfer. J Hum Reprod Sci 2009;2:23-6

How to cite this URL:
Mangalraj AM, Muthukumar K, Aleyamma T K, Kamath MS, George K. Blastocyst stage transfer vs cleavage stage embryo transfer. J Hum Reprod Sci [serial online] 2009 [cited 2023 Mar 25];2:23-6. Available from:

   Introduction Top

Advances in the dynamics of embryo culture allow us to culture embryos to the blastocyst stage. Prolonging the duration of culture to day 5 allows chromosomally competent embryos to develop to the blastocyst stage and permits selection of embryos that have the potential for continued development under embryonic genomic control. [1] In addition, selection of day 5 embryos has the advantage of physiological synchronization with the uterine endometrium, thereby, perhaps, resulting in better pregnancy rates. [2]

The introduction of sequential culture media that takes into account the changing metabolic requirement of the embryo, as it develops from the zygote to the blastocyst stage, allows extended culture. [3],[4]

Blastocyst transfer should enable transfer of fewer but higher-quality embryos resulting in increased implantation rates. This would maintain a high pregnancy rate while controlling the incidence of higher-order pregnancy. [5],[6],[7]

Although blastocyst transfer has been shown to be beneficial in good prognosis patients, similar benefits were not seen in an unselected group. [8] The aim of our study was to evaluate the efficacy of blastocyst transfer in comparison with day 3 embryo transfer.

   Materials and Methods Top

Women aged 35 years or less undergoing an in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycle between January 2002 and December 2006 were included in the study.

Cycle regulation was carried out in the cycle before the scheduled IVF with the oral contraceptive pill. Leuprolide acetate at a dose of 0.5mg subcutaneously daily was used to achieve down regulation and continued till day of human chorionic gonadotrophin (hCG) administration.

Recombinant follicle stimulation hormone (FSHr) was started after pituitary down regulation was confirmed with dose being adjusted for age. (Women aged 30 or less received 150 international units [IU] FSHr, between 30 and 35 received 225 IU and above 35 received 300 IU.) This dose schedule was modified according to parameters like body mass index, previous response and estimates of ovarian reserve. Follicular monitoring was initiated from the 6 th day of stimulation. Women were scheduled for oocyte retrieval once at least three follicles reached a size of 18 mm or more. Transvaginal oocyte retrieval was planned 35 h after an injection of hCG 5000 IU was given. Oocyte retrieval was carried out under conscious sedation using intravenous pethidine, midazolam and fentanyl in titrated doses.

The retrieved oocytes were incubated for 3-4 h in a fertilization medium and then depending on the situation (indication, number of oocytes, previous IVF performance) a decision for IVF or ICSI was made. Short incubation insemination (2 h) and group culture was followed for IVF.

Denudation of the oocytes was carried out (both mechanical and enzymatic) before ICSI was performed. The oocytes were incubated overnight in a miniincubator with triple gas mixture and observed after 16-18 h pos insemination/injection for fertilization. The fertilized oocytes were transferred into a cleavage medium (SAGE cleavage medium), incubated and observed for cleavage on day 3.

When four or more grade 1 embryos were observed on day 3, extended culture (SAGE blastocyst medium) till day 5 was undertaken. This policy was carried out between the years of January 2005 and December 2006 (study period of 2 years). This cohort was included in group 1, with a sample size of n = 50.

The number of blastocysts transferred was determined by availability of embryos, the patient age and the patient's previous clinical history. Not more than three blastocysts were transferred on any occasion. All embryo transfers were performed using the Sydney IVF catheter (k-jets-7019-SIVF; Cook IVF, Eight Miles Plains, Queensland, Australia) or Edward-Wallace catheter (Smiths Medical, Hythe, Kent, U.K).

Luteal support was given in the form of micronised vaginal progesterone pessaries in a dose of 400mg twice daily for 18 days postoocyte retrieval. In addition, 100mg IM progesterone was administered twice weekly.

Serum beta-hCG was performed on the 18 th day following oocyte retrieval and, if positive, a transvaginal ultrasound was performed 10 days later to detect and confirm intrauterine pregnancy.

To evaluate its efficacy, this policy was compared with a cohort of women (group 2, n = 85) who had at least three grade 1 embryos on day 3 and who had undergone a cleavage stage transfer during the time period of January 2002-December 2004 (study period of 3 years).

Outcome measures

Primary outcome was implantation rate and clinical pregnancy rate per oocyte retrieval.

The secondary outcomes included:

  1. Fertilization rate
  2. Cleavage rate
  3. Multiple pregnancy rates
  4. Mean number of embryo transferred

Implantation rate was defined as number of gestational sacs determined by ultrasound by number of embryos transferred.

Clinical pregnancy rate was defined as presence of a gestational sac with a fetal pole with cardiac activity on transvaginal ultrasound at 6 weeks.

Fertilization rate was defined as total number of fertilized oocytes by total number of mature oocytes retrieved.

Cleavage rate was defined as total number of day-3 embryos by total number of fertilized oocytes.

Statistical analysis

Data were analyzed with SPSS software (SPSS Inc., Chicago, IL, USA) subjected to analysis of variable (ANOVA), χ2 and paired sample t -test with significance ( P < 0.5, < 0.01 and < 0.001).

   Results Top

Women in whom blastocyst transfer was carried out were included in group 1 while group 2 consisted of women who underwent day 3 cleavage stage transfer.

There was no significant difference in mean age between the two groups [Table 1].

Women in group 1 had a significantly higher oocyte yield compared with women in group 2. The fertilization rates and cleavage rates were similar in both the groups. The mean number of embryos transferred was significantly lower in group 1.

The clinical pregnancy rate in group 1 was significantly higher than group 2 ( n = 31/50 [62%] vs n = 25/85 [29.76%]).

The implantation rate in group 1 was also significantly higher than group 2 ( n = 49/122 [40.16%] vs n = 35/306 [11.43%]).

There was no significant difference between the two groups in relation to singletons, twins or triplets [Table 2].

   Discussion Top

Human blastocysts developed in vitro have been reported to achieve high implantation rates prompting us to evaluate the efficacy of blastocyst transfer. [9] We followed a strategy proposed by Racowsky et al. allowing extended culture only when four or more grade 1 embryos had developed on day 3, thereby reducing the risk of not having embryos available for transfer on day 5. [6]

The results of this study conducted over a 2-year period were compared with the results of the preceding 2 years. Because extended culture was practiced only if an adequate number of good quality day 3 embryos were available, a similar cohort was selected from the preceding 2 years, namely women with at least three grade 1 embryos on day 3. This ensured proper matching and similarity in comparison.

Although the number of oocytes retrieved was significantly more in the blastocyst transfer group, there were no differences in the age, fertilization rates or cleavage rates between the two groups. There was a significantly higher implantation and clinical pregnancy rate in the blastocyst transfer group [40.16% vs 11.43%, P = 0.00; 62% vs 29.8%, P = 0.00).

In view of an anticipated improvement of implantation rate in the blastocyst transfer group, we limited the embryo transfer numbers to three or less. This is reflected in the significant difference between the two groups in terms of number of embryos transferred. (group 1 = 2.45 vs group 2 = 3.45, P = 0.00.) Nonetheless, there was no significant difference between the two groups in terms of higher order pregnancies, which is a reflection of the higher implantation rate in the blastocyst group. The results of this study will give us the confidence to limit transfer to two or lesser blastocysts.

Reasons for higher success rates with blastocyst are mainly related to an embryo selection process. Embryos selected for transfer on day 5 are healthier and carry a lower risk of being aneuploid, thereby increasing a patient's chances of achieving an ongoing pregnancy. [10]

Studies support the idea that blastocyst transfer with its higher implantation and pregnancy rates permits a single/double embryo transfer policy, thereby resulting in a reduction of multiple pregnancies. [11],[12]

Because the study groups were over different periods of time, the influence of changing practices cannot be eliminated. We were unable to incorporate the results of frozen embryo transfers in the two groups as the processes of freezing were dissimilar (slow freeze for the day 3 transfers vs vitrification for the blastocysts). Hence, cumulative pregnancy rates could not be evaluated. In spite of its pitfalls, this study demonstrates the benefits of blastocyst transfer. A randomized controlled trial will provide robust data and eliminate bias and data from this trial will help in calculation of sample size.

Our study indicates that in younger patients (less than 35 years), a threshold of four good quality embryos on day 3 is an indication for extended culture to day 5.

When assisted reproductive technology (ART) treatment is self- financed, couples are often unable to afford more than a single cycle of treatment. This prompts the care giver to consider transferring more than two to three embryos. To avoid neonatal morbidity and mortality associated with higher order pregnancies, fetal reduction is then resorted to.

In younger women with a good response and with four or more grade 1 embryos on day 5, extended culture can be offered. The good clinical pregnancy and implantation rates observed will confidently allow transfer of not more than two good quality blastocysts and allow women to enjoy the benefits of limiting numbers for transfer.

   References Top

1.Jones GM, Trouson AO, Lolatgi N, Wood C. Factors affecting the success of human blastocyst development and pregnancy following in vitro fertilization and embryo transfer. Fertil Steril 1998;70:1022-9.  Back to cited text no. 1    
2.Gardner DK, Vella P, Lane M, Wagley L, Schlenker T, Schoolcraft WB. Culture and transfer of human blastocysts increases implantation rates and reduces the need for multiple embryo transfers. Fertil Steril 1998;69:84-8.  Back to cited text no. 2  [PUBMED]  [FULLTEXT]
3.Olivenness F, Hazout A, Lelaidier C, Freitas S, Fanchin R, Frydman R, de Ziegler D. Fertilization and early embryology: Four indications for embryo transfer at the blastocyst stage. Hum Reprod 1994;9:2367-73.  Back to cited text no. 3    
4.Scholtes MC, Zeilmaker GH. A prospective randomized study of embryo transfer results after 3 or 5 days of embryo culture in in-vitro fertilization. Fertil Steril 1996;65:1245-8.  Back to cited text no. 4  [PUBMED]  
5.Jones GM, Trouson AO. Blastocyst stage transfer- Pitfalls and benefits of extended culture. Hum Reprod 1999;14:1405-8.  Back to cited text no. 5    
6.Racowsky C, Jackson KV, Cekleniak NA, Fox JH, Hornstein MD, Ginsburg ES. The number of eight cell embryos is a key determinate for selecting day 3 or day 5 transfers. Fertil Steril 2000;73:558-64.  Back to cited text no. 6  [PUBMED]  [FULLTEXT]
7.Lopta A. The neglected human blastocyst. J Assist Reprod Genetics 1992;9:509-12.  Back to cited text no. 7    
8.Blake DA, Farquhar CM, Johnson N, Proctor M. Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev 2007(4):CD002118.  Back to cited text no. 8  [PUBMED]  [FULLTEXT]
9.Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: A propective randomized trial. Fertil Steril 2004;81:551-5.  Back to cited text no. 9  [PUBMED]  [FULLTEXT]
10.Papanikolaou EG, D'haeseleer E, Verheyen G, Van de Velde H, Camus M, Van Steirteghem A, et al . Live birth rate is significantly higher after blastocyst transfer than after cleavage-stage embryo transfer when at least four embryos are available on day 3 of embryo culture. A randomized prospective study. Hum Reprod 2005;20:3198-203.  Back to cited text no. 10    
11.Vidaeff AC, Racowsky C, Rayburn WF. Blastocyst transfer in human In- vitro fertilization. A solution to multiple pregnancy epidemics. J Repro Med 2000;45:529-40.  Back to cited text no. 11    
12.Pantos K, Makrakis E, Karantzis P, Stavrou D, Grammatis M, Chronopoulos K. Blastocyst versus early cleavage embryo transfer: A retrospective analysis of 4,165 transfers. Clin Exp Obstet Gynecol 2004;31:42-4.  Back to cited text no. 12  [PUBMED]  


  [Table 1], [Table 2]

This article has been cited by
1 Outcomes of embryo vitrification at different developmental stages
Lizhen Xu, Shanshan Gao, Jingjing Jiang, Mei Sun, Yan Sheng, Rong Tang
Medicine. 2022; 101(19): e29233
[Pubmed] | [DOI]
2 A comparison of cleavage-stage embryo transfer and blastocyst transfers in patients with low anti-Mullerian hormone levels
Anatolian Current Medical Journal. 2021; 3(4): 264
[Pubmed] | [DOI]
3 Risk Factors of Recurrent Ectopic Pregnancy in Patients Treated With in vitro Fertilization Cycles: A Matched Case-Control Study
Yu Tan, Zhi-qin Bu, Hao Shi, Hui Song, Yi-le Zhang
Frontiers in Endocrinology. 2020; 11(2): 131
[Pubmed] | [DOI]
4 The impact of hyaluronan-enriched culture medium and intrauterine infusion of human chorionic gonadotropin on clinical outcomes in blastocyst transfer cycles.
Hanna Balakier, Iryna Kuznyetsova, Clifford L. Librach
Systems Biology in Reproductive Medicine. 2020; 66(2): 79
[Pubmed] | [DOI]
5 Analysis of In Vitro FertilizationóIntracytoplasmic Sperm Injection Results from Fresh Day 2 and Day 3 Embryo Transfers at a Tertiary In Vitro Fertilization Center
Nandita Palshetkar, Hrishikesh Pai, Rohan Palshetkar, Biswanath G Dastidar, Nikita Lad, Jiteeka Thakkar
Journal of South Asian Federation of Obstetrics and Gynaecology. 2019; 11(1): 58
[Pubmed] | [DOI]
6 Optimising the Outcome of Embryo Transfer
Sunita Tandulwadkar, Madhuri Patil, Sejal Naik
EMJ Reproductive Health. 2019; : 110
[Pubmed] | [DOI]
7 Blastocyst Transfer Ameliorates Live Birth Rate Compared with Cleavage-Stage Embryos Transfer in FreshIn VitroFertilization or Intracytoplasmic Sperm Injection Cycles: Reviews and Meta-Analysis
Shan-Shan Wang,Hai-Xiang Sun
Yonsei Medical Journal. 2014; 55(3): 815
[Pubmed] | [DOI]
8 Comparison of GnRH agonist and antagonist protocols in normoresponder patients who had IVF-ICSI
Mustafa Kara,Turgut Aydin,Turhan Aran,Nurettin Turktekin,Betul Ozdemir
Archives of Gynecology and Obstetrics. 2013; 288(6): 1413
[Pubmed] | [DOI]
9 Blastocyst selection criteria: Towards day five single embryo transfer [Sele√ß√£o de blastocistos: Em dire√ß√£o √† transfer√™ncia √ļnica]
Crosby, J. and MacKenna, A.
Jornal Brasileiro de Reproducao Assistida. 2013; 17(3): 162-165
10 A perspective study on elective single blastocyst transfer
Wang, W. and Wang, A. and Shang, W. and Li, M. and Liu, C. and Wu, D. and Zhao, Y. and Shen, Y.
Medical Journal of Chinese Peopleśs Liberation Army. 2012; 37(9): 719-722
11 Clinical outcome of fresh and vitrified-warmed blastocyst and cleavage-stage embryo transfers in ethnic Chinese ART patients
Tong, G.Q. and Cao, S.R. and Wu, X. and Zhang, J.Q. and Cui, J. and Heng, B.C. and Ling, X.F.
Journal of Ovarian Research. 2012; 5(1)
12 Clinical outcome of fresh and vitrified-warmed blastocyst and cleavage-stage embryo transfers in ethnic Chinese ART patients
Guo Tong,Shan Cao,Xun Wu,Jun Zhang,Ji Cui,Boon Heng,Xiu Ling
Journal of Ovarian Research. 2012; 5(1): 27
[Pubmed] | [DOI]
13 Frozen-thawed embryo transfer cycles: clinical outcomes of single and double blastocyst transfers
Inna Berin, Sarah T. McLellan, Eric A. Macklin, Thomas L. Toth, Diane L. Wright
Journal of Assisted Reproduction and Genetics. 2011; 28(7): 575
[VIEW] | [DOI]
14 Analysis of clinical outcomes for embryo transfer and blastocyst transfer
Gui-Qin, H., Rong, L., Lan, G., Jin-Bei, X., Wei-Hong, Y.
Journal of Clinical Rehabilitative Tissue Engineering Research. 2011; 15(31): 5739-5742
15 Culture and transfer of blastocysts
Hao, G.-Q., Li, R., Geng, L., Xu, J.-B., Xi, W., Guo, Q.-P.
Journal of Clinical Rehabilitative Tissue Engineering Research. 2010; 14(31): 5801-5804


Print this article  Email this article


    Similar in PUBMED
    Search Pubmed for
    Search in Google Scholar for
  Related articles
    Article in PDF (200 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  

    Materials and Me...
    Article Tables

 Article Access Statistics
    PDF Downloaded506    
    Comments [Add]    
    Cited by others 15    

Recommend this journal